在软件开发流程中,代码编译是不可或缺的一环。面对日益增长的开源项目规模和复杂性,手动进行仓库级编译往往伴随着效率低下和错误频发的问题。如何有效应对环境配置、依赖管理及编译错误等挑战,是当前自动化软件分析领域的一个重要课题。今天,我们很高兴向大家介绍一项由奇安信星图实验室和中国科学技术大学共同参与的研究项目——CompileAgent,这项工作已成功中稿ACL 2025!它是一个基于大型语言模型(LLM)的智能体框架,旨在探索仓库级代码编译的自动化方案。
仓库级编译的挑战
与简单的单文件编译不同,对整个代码仓库进行编译涉及复杂的构建配置和多文件间的相互依赖。开发者们在这一过程中常遇到诸多难题,例如查找准确的编译指令、处理依赖冲突、解决环境不匹配以及代码兼容性问题等。这些挑战使得自动化编译成为一个复杂且有待深入探索的领域。
CompileAgent:一个LLM驱动的仓库级自动化编译框架
受到LLM在自动化复杂任务方面应用前景的启发,我们提出了CompileAgent——首个专为仓库级代码编译任务设计的LLM智能体框架。它旨在通过模拟开发者的编译工作流,自主地搜索编译指令并解决编译过程中出现的错误。
CompileAgent的关键组成:
CompileAgent集成了五种工具和一个流式代理策略,主要通过以下两个核心模块协同工作:
- CompileNavigator(编译导航模块):负责在代码仓库中寻找并提取正确的编译指令。它利用Shell工具与交互环境进行操作,通过文件导航器(File Navigator)识别可能包含指令的文件,并借助指令提取器(Instruction Extractor)从文件中提炼出编译步骤,甚至从相关URL获取网页内容进行汇总。
- ErrorSolver(错误解决模块):专用于处理项目构建过程中遇到的编译错误。它包含网页搜索(Website Search)工具,能够查询在线资源(如GitHub和StackOverflow)以获取解决方案。此外,它还采用了多智能体讨论(Multi-Agent Discussion)机制,多个LLM智能体通过多轮讨论,共同分析复杂的编译错误并生成初始解决方案,直到达成共识。
CompileAgent遵循一种流式代理策略,该策略定义了工具的使用顺序,并通过提示词实现工具间的无缝衔接。

实验效果
我们构建了CompileAgentBench,一个包含100个C/C++项目的仓库级编译基准,使用七个主流LLM驱动CompileAgent进行了评估。实验结果显示了CompileAgent的有效性:
- 编译成功率提升:相较于现有的基线方法(OSS-FuZZ-Gen)和针对辅助编译而构建的方案(Readme-Al 和 RAG),CompileAgent的编译成功率提升了17%至71%。例如,在Claude-3.5-sonnet模型上,成功率提升了71%。
- 编译时间减少: 编译总时间可减少最多121.9小时。
成本效益: 平均每个项目的编译成本约为0.22美元。

讨论与未来潜力
CompileAgent的实践经验表明,LLM智能体在处理复杂的软件工程任务方面具有潜力。这项工作在多个领域提供了启发意义:
- 自动化CI/CD: 仓库级自动化编译是持续集成/持续部署(CI/CD)流程中的关键一步。CompileAgent的成功经验为构建更智能、更自主的CI/CD流水线提供了新的思路。
- 自动化程序分析: 编译成功所生成的二进制文件或库可用于后续的性能测试、优化和安全漏洞分析。CompileAgent也可以继承编译时代码分析工具(如Coverity Scan和Scan-Build),可以进一步提升自动化程序分析的效率和可靠性。
- 软件标准测试环境自动化构建: 通过自动完成复杂的编译过程,CompileAgent有助于快速搭建和维护标准化的软件测试环境,降低环境配置的难度和耗时。
- 多语言与跨架构编译: 借助其可扩展性,CompileAgent有望支持多语言(如Go、Rust等)和多架构(如MIPS、ARM等)的编译,从而拓展其应用范围。
CompileAgent的工作为LLM在真实世界软件工程领域的应用打开了新的视角。我们期待它能在未来的自动化开发实践中发挥更大的作用。
实践应用
实际上,CompileAgent在我们先前发布的ReCopilot项目的数据构建过程中起到了重要作用。我们使用它自动化编译了上百个开源项目,构建了9,733个 artifact-level 二进制文件,节省了约7人天的枯燥劳动时间,模型推理开销仅约100元人民币。
「ReCopilot由奇安信技术研究院星图实验室研发, 是一个基于大模型的二进制程序分析辅助系统,利用人工智能增强逆向工程工作流程,为人类逆向工程师提供帮助以提升效率。公开Demo:https://tqgpt.qianxin.com/recopilot 」
更多参考
想了解更多技术细节?欢迎阅读我们的学术论文或访问项目主页:
- 学术论文: https://arxiv.org/abs/2505.04254
- 代码仓库: https://github.com/Ch3nYe/AutoCompiler
感谢您的阅读,期待CompileAgent能为您的研究带来启发!